${ }^{\text {a }}$ College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, Suzhou 215123, People's Republic of China
${ }^{\mathrm{b}}$ College of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*E-mail: dqshi@suda.edu.cn
Received October 6, 2008
DOI 10.1002/jhet. 223
Published online 11 November 2009 in Wiley InterScience (www.interscience.wiley.com).

Abstract

A series of 2-amino-5-aryl-5,6-dihydropyrido[2,3- d]pyrimidine-4,7(3H,8H)-dione derivatives were synthesized via the three-component reaction of aromatic aldehyde, 2,6-diaminopyrimidine- $4(3 \mathrm{H})$-one, and Meldrum's acid in water in the presence of triethylbenzylammonium chloride (TEBAC). This protocol has the advantages of easier work-up, milder reaction conditions, and environmentally benign procedure.

J. Heterocyclic Chem., 46, 1331 (2009).

INTRODUCTION

Multicomponent reactions (MCRs), in which multiple reactions are combined into one synthetic operation, have been extensively used in synthetic chemistry for the formation of carbon-carbon and carbon-heteroatom bonds [1]. Such reactions offer a wide range of possibilities for the efficient construction of highly complex molecules in a single procedural step, thus avoiding complication operations and allowing saving both of solvent and of reagents. In the past decade there have been tremendous developments in three- and four-component reactions and great efforts continue to be made to develop new MCRs [2]. The need to reduce the amount of toxic waste and by-product arising from chemical processes requires increasing emphasis on the use of less toxic and environmentally compatible materials in the design of new synthetic methods. One of the most promising approaches is using water as the reaction medium. Breslow rediscovered the use of water as a solvent in organic synthesis in the 1980s [3]. There has been growing recognition that water is an attractive medium for many organic reactions [4] and many MCRs in aqueous media have been reported [5].

The importance of uracil and its annulated derivatives is well recognized by synthetic [6] as well as biological [7] chemists. With the development of clinically useful anticancer and antiviral drugs [8], there has recently been remarkable interest in the synthetic manipulations of uracils [9]. Pyrido[2,3-d]pyrimidines have received considerable attention over the past years because of
their wide range of biological activities, which include antitumor [10], antibacterial [11], anti-inflammatory [12], antifungal [13], and antileishmaniasis [14] properties, and also act as cyclin-dependent kinase 4 inhibitors [15]. Therefore, for the preparation of these complex molecules large efforts have been directed toward the synthetic manipulation of uracils. Broom et al. [16] synthesized pyrido[2,3-d]pyrimidines from the reaction of DMAD and 6 -aminouracile in protic solvent but obtained uncyclized condensed acetylenic adduct when the reaction was carried in DMF [17]. Bhuyan et al. [18] reported the synthesis of pyrido[2,3- d]pyrimidines from the reaction of arylidenemalononitrile with 6 -aminouracil in refluxing 1 -propanol, but in this reaction, benzylmalononitrile was obtained as by-product and the amount of arylidenemalononitrile needed was in excess. Rodríguez et al. [19] reported the synthesis of 9-aryl substituted 2-amino-4,7-dioxopyrido[2,3-d]pyrimidines by refluxing equimolar amounts of 5-arylidene substituted Meldrum's acid and 2,6-diamino-4-oxopyrimidine in acetic acid. Recently, Devi et al. [20] reported a novel three-component one-pot synthesis of pyrido[2,3d]pyrimidines using microwave heating. These methods usually require forcing conditions, using organic solvents, long reaction times and complex synthetic pathways. As part of our current studies on the development of new routes to heterocyclic systems [21], recently we have reported the synthesis of pyrido[2,3-d]pyrimidine derivatives by the three-component reaction of aldehyde,

alkyl nitriles, and aminopyrimidines in water [22]. In this article, we would report an efficient and clean synthetic route to 2-amino-5-aryl-5,6-dihydropyrido[2,3- d] pyrimidine-4,7(3H,8H)-dione derivatives in aqueous media catalyzed by TEBAC.

RESULTS AND DISCUSSION

When the three-components of aromatic aldehyde 1, 2,6-diaminopyrimidine-4(3H)-one 2, and Meldrum's acid 3 were treated in water in the presence of TEBAC at $90^{\circ} \mathrm{C}$ for a few hours (Scheme 1), the desired 2-amino-5-aryl-5,6-dihydropyrido[2,3-d]pyrimidine-4,7(3H, 8 H)-dione 4 were obtained in high yields (Table 1).

As shown in Table 1, this protocol could be applied not only to the aromatic aldehydes with electron-withdrawing groups (such as halide and nitro groups), but also to aromatic aldehydes with electron-donating groups (such as alkyl and alkoxyl groups). Therefore, we concluded that the electronic nature of the substituents of aldehydes has no significant effect on this reaction. However, because some aldehydes were remaining in the mixture, so some aldehydes gave low yields.

The structures of the compounds 4 were identified by their spectroscopy analysis. Thus, the IR spectra of compounds $\mathbf{4}$ measured in potassium bromide pellets show two bands of the elongation vibrations of the $\mathrm{C}=\mathrm{O}$ group at 1703-1646 cm ${ }^{-1}, \mathrm{NH}_{2}$, and NH groups at $3467-3157 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectra of compounds 4 measured in dimethyl- d_{6} sulfoxide were observed the

Table 1
Synthesis of 2-amino-5-aryl-5,6-dihydropyrido[2,3-d]pyrimidine$4,7(3 H, 8 H)$-dione $\mathbf{4}$ in aqueous media.

Entry	Ar	Time (h)	Yield (\%)
$\mathbf{4 a}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	5	76
$\mathbf{4 b}$	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	3	74
$\mathbf{4 c}$	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	9	69
$\mathbf{4 d}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	4	67
$\mathbf{4 e}$	$2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	6	75
$\mathbf{4 f}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	9	65
$\mathbf{4 g}$	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	5	95
$\mathbf{4 h}$	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	4	72
$\mathbf{4 i}$	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	4	69
$\mathbf{4 j}$	$3,4-\mathrm{OCH}_{2} \mathrm{OC}_{6} \mathrm{H}_{3}$	8	80
$\mathbf{4 k}$	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	6	82

Scheme 2

CH_{2} proton signals at $2.41-2.57$ and $2.91-3.17 \mathrm{ppm}$, the CH proton signals at $4.05-4.46 \mathrm{ppm}$, the NH_{2} proton signals at $6.53-6.66 \mathrm{ppm}$, the aromatic proton signals at $6.82-8.16 \mathrm{ppm}$, and the NH proton signals at $10.10-$ 10.33 and $10.60-10.90 \mathrm{ppm}$, respectively.

Although the detailed mechanism of earlier reaction remains not to be fully clarified, the formation of compounds 4 could be explained by a reaction sequence presented in Scheme 2. According to the literature [23], we proposed that the reaction proceeded via a reaction sequence of condensation, addition, cyclization, and elimination. First, the condensation of aldehyde $\mathbf{1}$ and Meldrum's acid $\mathbf{3}$ gave the intermediate product 5. The addition of $\mathbf{5}$ to 2,6-diaminopyrimidine-4(3H)-one 2, then cyclized to give intermediate product $\mathbf{6}$. The carbon dioxide and acetone were losing from the intermediate product 6 to give the products 4 .

In conclusion, we have developed a simple threecomponent reaction consisting of an aldehyde, 2,6-dia-minopyrimidine-4(3H)-one, and Meldrum's acid for the synthesis of 2-amino-5-aryl-5,6-dihydropyrido[2,3-d] pyrimidine-4,7(3H,8H)-dione derivatives in aqueous media. This method has the advantages of easier workup, milder reaction conditions, and environmentally benign procedure.

EXPERIMENTAL

Melting points are uncorrected. Infrared spectra were recorded on a Tensor 27 spectrometer in KBr with absorption in cm^{-1}. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker DPX $400-\mathrm{MHz}$ spectrometer as DMSO- d_{6} solution. J values are in Hz . Chemical shifts are expressed in δ downfield from internal tetramethylsilane.

General procedure for the synthesis of 2-amino-5-aryl-5,6-dihydropyrido[2,3- d] pyrimidine-4,7(3H,8H)-dione derivatives 4 in aqueous media. A suspension of a mixture of aromatic aldehyde 1 (2 mmol), 2,6-diaminopyrimidine-4(3H)-one $2(2 \mathrm{mmol})$, Meldrum's acid $3(2 \mathrm{mmol})$ and TEBAC $(0.15 \mathrm{~g})$ was stirred in water $(10 \mathrm{~mL})$ at $90^{\circ} \mathrm{C}$ for several hours. After
completion monitored by TLC, the reaction mixture was allowed to cool to room temperature. The crystalline powder formed recrystallized from DMF and water to give pure 4.

2-Amino-5-(4-fluorophenyl)-5,6-dihydropyrido[2,3-d]pyrimi-dine-4,7(3H, $\mathbf{8 H}$)-dione (4a). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [24] $>300^{\circ} \mathrm{C}$); IR (potassium bromide): 3325, 3167, 1691, 1652, 1591, 1537, 1508, 1485, 1361, 1305, 1264, 1211, 1158, 1099, 1015, 973, 906, 838, 794 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.48(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 2.96 (dd, $\left.J_{1}=7.6 \mathrm{~Hz}, J_{2}=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 4.13(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.59$ (br., s, 2H, NH2), 7.07-7.12 (m, 2H, ArH), 7.16-7.20 (m, 2H, ArH), 10.16 (s, 1H, NH), 10.64 (s, 1H, $\mathrm{NH})$.

2-Amino-5-(4-methoxylphenyl)-5,6-dihydropyrido[2,3- d] pyrimidine-4,7(3H,8H)-dione (4b). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [24] $>300^{\circ} \mathrm{C}$); IR (potassium bromide): 3464, 3315, 3159, 1691, 1652, 1596, $1559,1539,1511,1488,1457,1396,1361,1310,1251,1220$, 1178, 1033, 907, 831, 793, $699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ 2.45 (d, $J=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.91$ (dd, $J_{1}=7.6 \mathrm{~Hz}, J_{2}=16$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 6.53 (br., s, 2H, NH2), 6.82 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 10.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.80(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}$).

2-Amino-5-(4-bromophenyl)-5,6-dihydro[2,3-d] pyrimidine-4, $7(\mathbf{3 H}, \mathbf{8 H})$-dione (4c). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [24] $>300^{\circ} \mathrm{C}$); IR (potassium bromide): $3325,3159,1688,1646,1588,1539,1486,1398,1362$, 1307, 1262, 1212, 1158, 1074, 1010, 972, 907, 817, $793 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.47$ (d, $\left.J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 2.97$ (dd, $\left.J_{1}=8.0 \mathrm{~Hz}, J_{2}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 4.11(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.60$ (br., s, 2H, NH2), 7.11 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.47 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 10.18 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 10.66 (s, 1H, NH).

2-Amino-5-(4-chlorophenyl)-5,6-dihydropyrido[2,3-d]pyrimi-dine-4,7(3H,8H)-dione (4d). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [24] $>300^{\circ} \mathrm{C}$); IR (potassium bromide): $3460,3319,3158,1698,1650,1591,1539,1487$, 1398, 1361, 1307, 1261, 1211, 1159, 1091, 1014, 973, 907, 819, $793 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.47(\mathrm{~d}, J=16 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 2.97\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 4.12$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 6.59 (br., s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.17 (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 10.16(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}), 10.65$ (s, 1H, NH).
2-Amino-5-(2-nitrophenyl)-5,6-dihydropyrido[2,3-d]pyrimi-dine-4,7(3H,8H)-dione (4e). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [19] $>300^{\circ} \mathrm{C}$); IR (potassium bromide): 3433, 3319, 3167, 1698, 1652, 1588, 1536, 1519, 1477, 1408, 1340, 1281, 1259, 1233, 1213, 1165, 1018, 967 , 930, 904, 862, 824, 794, 744, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): \delta 2.41(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.17\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}\right.$, $\left.J_{2}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 4.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.65$ (br., s, 2H, NH2), 7.16 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.49(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.93(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 10.33 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 10.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
2-Amino-5-(4-methylphenyl)-5,6-dihydro-pyrido[2,3-d] pyrimi-dine-4,7($\mathbf{3 H}, \mathbf{8 H}$)-dione ($\mathbf{4 f}$). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [24] $>300^{\circ} \mathrm{C}$); IR (potassium bromide): 3315, 3157, 1698, 1653, 1636, 1600, 1559, 1540, 1487, 1457, 1395, 1362, 1309, 1264, 948, 904, 835, $809 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.23$ (s, 3H, CH ${ }_{3}$), 2.45 (d, $J=16$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.93\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right)$, 4.07 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 6.55 (br., s, 2H, NH 2), 7.02 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 10.10$ (s, 1H, NH), $10.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

2-Amino-5-(3-nitrophenyl)-5,6-dihydropyrido[2,3-d] pyrimi-dine- $4,7(3 \mathrm{H}, 8 \mathrm{H})$-dione $(\mathbf{4 g})$. This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [24] $>300^{\circ} \mathrm{C}$); IR (potassium bromide): 3450, 3317, 3163, 1691, 1652, 1588, 1530, 1470, 1405, 1353, 1301, 1266, 1020, 977, 929, 894, 826, 807, 790, $737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.57(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 3.05\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 4.30(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.66$ (br, s, 2H, NH 2), $7.58 \sim 7.67(\mathrm{~m}, 2 \mathrm{H}$, $\operatorname{ArH}), 8.01(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}), 8.06-8.11(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArH}), 10.28(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}), 10.71$ (s, 1H, NH).

2-Amino-5-(3-chlorophenyl)-5,6-dihydropyrido[2,3-d]pyrimi-dine-4, $\mathbf{7 (3 H}, \mathbf{8 H}$)-dione ($\mathbf{4 h}$). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [24] $>300^{\circ} \mathrm{C}$); IR (potassium bromide): 3325, 3169, 1683, 1652, 1585, 1539, 1477, 1391, 1264, 1212, 953, 907, 840, 786, $781 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): \delta 2.49(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.97\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}\right.$ $=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.14(d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.62$ (br., s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, 7.25-7.34 (m, 2H, ArH), 10.17 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 10.67 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH})$.

2-Amino-5-(2-chlorophenyl)-5,6-dihydropyrido[2,3-d]pyrimi-dine-4, $\mathbf{7 (3 H}, \mathbf{8 H}$)-dione (4i). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [24] $>300^{\circ} \mathrm{C}$); IR (potassium bromide): 3327, 3174, 1703, 1670, 1621, 1540, 1487, 1440, 1395, 1359, 1325, 1098, 1048, 1035, 1005, 975, 909, 813, 753 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.37(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 3.04 (dd, $\left.J_{1}=8.4 \mathrm{~Hz}, J_{2}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 4.46(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 6.61 (br, s, 2H, NH2 $)$, 6.89-6.93 (m, 1H, ArH), 7.21-7.28 (m, 2H, ArH), 7.45-7.49 (m, 1H, ArH), 10.20 (s, 1H, NH), 10.68 (s, 1H, NH).

2-Amino-5-(benzo[d][1,3]dioxol-6-yl)-5,6-dihydropyrido [2,3-d]pyrimidine-4,7-(3H,8H)-dione (4j). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [24] $>300^{\circ} \mathrm{C}$); IR (potassium bromide): 3467, 3320, 3164, 1694, 1639, 1591, 1540, 1502, 1486, 1438, 1405, 1356, 1311, 1242, 1212, 1121, 967, 934, 811, 807, $790 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 2.45$ (d, $J=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.91$ (dd, $J_{1}=7.6 \mathrm{~Hz}, J_{2}=16 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 4.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right)$, 6.50-6.62 (m, 3H, NH2 +ArH), 6.73 (s, 1H, ArH), 6.79 (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 10.12 (s, 1H, NH), 10.62 (s, 1H, NH).

2-Amino-5,6-dihydro-5-(4-nitrophenyl)pyrido[2,3-d]pyrimi-
 solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [24] $>300^{\circ} \mathrm{C}$); IR (potassium bromide): 3360, 3308, 3186, 1693, 1675, 1588, 1513, 1482, 1412, 1347, 1305, 1262, 1180, 1058, 1022, 966, 905, 826, $791,701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.53(\mathrm{~d}, J=16.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}$), 3.06 (dd, $J_{1}=8.0 \mathrm{~Hz}, J_{2}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.27 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 6.64 (br., s, 2H, NH2), 7.44 (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 8.16 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 10.27 (s , $1 \mathrm{H}, \mathrm{NH}), 10.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

Acknowledgments. The authors are grateful to the Foundation of Key Laboratory of Organic Synthesis of Jiangsu Province and Key Laboratory of Biotechnology on Medical Plants of Jiangsu Province for financial support.

REFERENCES AND NOTES

[1] (a) Tietze, L. F.; Modi, A. Med Res Rev 2000, 20, 304; (b) Dömling, A.; Ugi, I. Angew Chem Int Ed 2000, 39, 3168; (c) Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem Eur J 2000, 6, 3321; (d) Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.; Mathen, J. S.; Balagopal, L. Acc Chem Res 2003, 36, 899; (e) Ramon, D. J.; Yus, M. Angew Chem Int Ed 2005, 44, 1602.
[2] (a) Nair, V.; Vinod, A. U.; Rajesh, C. J Org Chem 2001, 66, 4427; (b) List, B.; Castello, C. Synlett 2001, 1687; (c) Shestopalov, A. M.; Emeliyanova, Y. M.; Shestiopolov, A. A.; Rodinovskaya, L. A.; Niazimbetova, Z. I.; Evans, D. H. Org Lett 2002, 4, 423; (d) Bertozzi, F.; Gustafsson, M.; Olsson, R. Org Lett 2002, 4, 3147; (e) Yuan, Y.; Li, X.; Ding, K. Org Lett 2002, 4, 3309; (f) Bagley, M. C.; Cale, J. W.; Bower, J. Chem Commun 2002, 1682; (g) Cheng, J. F.; Chen, M.; Arthenius, T.; Nadzen, A. Tetrahedron Lett 2002, 43, 6293; (h) Huma, H. Z. S.; Halder, R.; Kalra, S. S.; Das, J.; Iqbal, J. Tetrahedron Lett 2002, 43, 6485; (i) Bora, U.; Saikia, A.; Boruah, R. C. Org Lett 2003, 5, 435; (j) Dallinger, D.; Gorobets, N. Y.; Kappe, C. O. Org Lett 2003, 5, 1205.
[3] Breslow, R.; Bovy, P.; Hersh, C. L. J Am Chem Soc 1980, 102, 2115.
[4] (a) Li, C. J. Chem Rev 1993, 93, 2023; (b) Ballini, R.; Bosica, G. Tetrahedron Lett 1996, 37, 8027; (c) Ballini, R.; Bosica, G.; Mecozzi, T. Tetrahedron 1997, 53, 7341; (d) Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. J Org Chem 1999, 64, 1033; (e) Bigi, F.; Carloni, S.; Ferrari, L.; Maggi, R.; Mazzacani, A.; Sartori, G. Tetrahedron Lett 2001, 42, 5203; (f) Li, C. J. Chem Rev 2005, 105, 3095.
[5] (a) Shi, D. Q.; Chen, J.; Zhuang, Q. Y.; Hu, H. W. J Chem Res, (S) 2003, 674; (b) Shi, D. Q.; Mou, J.; Zhuang, Q. Y.; Niu, L. H.; Wu, N.; Wang, X. S. Synth Commun 2004, 34, 4557; (c) Shi, D. Q.; Mou, J.; Zhuang, Q. Y.; Wang, X. S. J Chem Res, (S) 2003, 821.
[6] (a) Bradshaw, T. K.; Hutchison, D. W. Chem Soc Rev 1977, 6, 43; (b) Sasaki, T.; Minamoto, K.; Suzuki, T.; Yamashita, S. Tetrahedron 1980, 36, 865; (c) Prajapati, D.; Bhuyan, P. J.; Sandhu, J. S. J Chem Soc Perkin Trans I 1988, 607; (d) Bhuyan, P. J.; Borah, H. N.; Sandhu, J. S. J Chem Soc Perkin Trans I 1999, 3083.
[7] (a) Marumoto, R.; Furukawa, Y. Chem Pharm Bull 1997, 25, 2974; (b) Griengl, R.; Wack, E.; Schwarz, W.; Streicher, W.; Rosenwirth, B.; Clercq, E. D. J Med Chem 1987, 30, 1199; (c) Clercq, E. D.; Bernaerts, R. J Biol Chem 1987, 262, 14905; (d) Jones, A. S.; Sayers, J. R.; Walker, R. T.; Clercq, E. D. J Med Chem 1988, 31, 268; (e) Mitsuya, H.; Yarchoan, R.; Broder, S. Science 1990, 249, 1533; (f) Pontikis, R.; Monneret, C. Tetrahedron Lett 1994, 35, 4351.
[8] (a) Heidelberger, C.; Arafield, F. J Cancer Res 1963, 23, 1226; (b) Baba, M.; Pauwels, R.; Herdwig, P.; Clercq, E. D.; Desmyster, J.; Vandepulfe, M. Biochem Biophys Res Commun 1987, 142, 128; (c) Clercq, E. D. J Med Chem 1986, 29, 1561; (d) Clercq, E. D.

Anticancer Res 1986, 6, 549; (e) Jones, A. S.; Verhalst, G.; Walker, R. T. Tetrahedron Lett 1979, 20, 4415.
[9] (a) Hirota, K.; Kitade, Y.; Senda, S.; Halat, M. J.; Watanabe, K. A.; Fox, J. J. J Org Chem 1981, 46, 846; (b) Su, T. L.; Huang, J. T.; Burchanal, J. H.; Watanabe, K. A.; Fox, J. J. J Med Chem 1986, 29, 709; (c) Prajapati, D.; Sandhu, J. S. Synthesis 1988, 342.
[10] (a) Broom, A. D.; Shim, J. L.; Anderson, G. L. J Org Chem 1976, 41, 1095; (b) Grivsky, E. M.; Lee, S.; Sigel, C. W.; Duch, D. S.; Nichol, C. A. J Med Chem 1980, 23, 327.
[11] (a) Matsumoto, J.; Minami, S. J Med Chem 1975, 18, 74; (b) Suzuki, N. Chem Pherm Bull 1980, 28, 761; (c) Oakes, V.; Rydon, H. N. J Chem 1956, 4433; (d) Degraw, J. I.; Kisliuk, R. L.; Gaumont, Y.; Baugh, C. M. J Med Chem 1974, 17, 470; (e) Zakharov, A. V.; Gavrilov, M. Y.; Novoselova, G. N.; Vakhrin, M. I.; Konshin, M. E. Khim Farm Zh 1996, 30, 39.
[12] Deyanov, A. B.; Niyazov, R. K.; Nazmetdinov, F. Y.; Syropyatov, B. Y.; Kolla, V. E.; Konshin, M. E. Khim Farm Zh 1991, 25, 26.
[13] Heckler, R. E.; Jourdan, G. P.; Eur. Pat. Appl. EP 414386 A1 27, 1991; Chem Abstr 1991, 115, 71630.
[14] Agarwal, A.; Ashutosh, R.; Goyal, N.; Chauhan, P. M. S.; Gupta, S. Bioorg Med Chem 2005, 13, 6678.
[15] VanderWel, S. N.; Harvey, P. J.; McNamara, D. J.; Repine, J. T.; Keller, P. R.; Quin III, J.; Booth, R. J.; Elliott, W. L.; Dobrusin, E. M.; Fry, D. W.; Toogood, P. L. J Med Chem 2005, 48, 2371.
[16] Broom, A. D.; Shim, J. L.; Anderson, C. L. J Org Chem 1976, 41, 1095.
[17] Shim, J. L.; Neiss, R.; Broom, A. D. J Org Chem 1972, 37, 578.
[18] Bhuyan, P.; Boruah, R. C.; Sandhu, J. S. J Org Chem 1990, 55, 568.
[19] Rodríguez, R.; Suarez, M.; Ochoa, E.; Pita, B.; Espinosa, R.; Martin, N.; Quinteiro, M.; Seoane, C.; Soto, J. L. J Heterocyclic Chem 1997, 34, 957.
[20] Devi, I.; Kumar, B. S. D.; Bhuyan, P. J. Tetrahedron Lett 2003, 44, 8307.
[21] (a) Shi, D. Q.; Zhang, S.; Zhuang, Q. Y.; Wang, X. S.; Tu, S. J.; Hu, H. W. Chin J Chem 2003, 21, 680; (b) Shi, D. Q.; Mou, J.; Zhuang, Q. Y.; Wang, X. S. Chin J Chem 2005, 23, 1223.
[22] Shi, D. Q.; Niu, L. H.; Shi, J. W.; Wang, X. S.; Ji, S. J. J Heterocyclic Chem 2007, 44, 1083.
[23] Bigi, F.; Carloni, S.; Ferrari, L.; Maggi, R.; Mazzacani, A,; Sartori, G. Tetrahedron Lett 2001, 42, 5203.
[24] Tu, S. J.; Wang, Q.; Xu, J. N.; Zhu, X. T.; Zhang, J. P.; Jiang, B.; Jia, R. H.; Zhang, Y.; Zhang, J. Y. J Heterocyclic Chem 2006, 43, 855.

